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Modelling the different smallpox epidemics in England
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SUMMARY

Time series analysis has revealed two different patterns of smallpox epidemics in Britain in the
seventeenth and eighteenth centuries: in large conurbations (exemplified by London) the disease was
endemic whereas medium-sized rural towns (exemplified by Penrith, Cumbria) suffered from 5 year
epidemics with no cases of smallpox in the inter-epidemic years. The oscillations (epidemics) persisted
for over 150 years and it is suggested that both systems were pumped up by regular fluctuations in
susceptibility (88). Modelling suggests that: (i) the natural frequency of oscillations in large cities is two
years and the system is pumped up by a 1 year, seasonal input; (ii) it takes five years to build up a pool
of susceptibles in medium-sized towns by new births and epidemics are then triggered by a 5 year input.
The equations represent a system that has two components, a basic linear element with the remainder of
the system being nonlinear; modelling a progressive increase in 88 in London illustrates theoretically
how a predominantly linear response changes to a nonlinear response and ultimately to chaos. A
variation in susceptibility is a theoretical condition for inducing chaos; the undriven system cannot
become chaotic. Modelling populations of progressively increasing size/density and applying a 1 year or
5 year sinusoidal oscillation in 88 illustrates the fundamental distinction in the response of medium-sized
rural towns and large cities.

size/density was below a critical level: no smallpox

1. INTRODUCTION . .
epidemics were detectable. In some smaller commu-
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Smallpox has been described as the most infectious
human disease but was rarely lethal until the 1630s
(Appleby 1981) when many accounts suggest that a
particularly virulent strain began to afflict people
(Corfield 1987) with a gradual but significant increase
in the case fatality rate (Razzell 1977). It was greatly
feared in England from the time of the final visitation
of bubonic plague in 1666 until the end of the
nineteenth century, when it ceased to be endemic
(Smith 1987) because of variolation, inoculation and
vaccination.

We have used the burial series of parish registers to
study child mortality, analysing the results by
conventional time-series analysis: we have described
short-wavelength oscillations in mortality (Duncan ef
al. 1992) and have suggested that the peaks are
composed, in part, of child deaths resulting from
smallpox epidemics (Duncan et al. 1993a). We have
also analysed smallpox deaths directly by time-series
analysis in the Bills of Mortality series (Duncan et al.
19935). It is evident that the dynamics of this viral
disease during the seventeenth and eighteenth
centuries were different in different population
centres, as follows.

1. Scattered communities where the population

t To whom correspondence should be addressed.

nities, the population increased rapidly after about
1750 and regular epidemics began once numbers had
increased above a critical size (Duncan et al. 19934).

2. Medium-sized rural towns where smallpox
epidemics with a 5-year periodicity began to be
firmly established after about 1640. The disease was
not endemic at any time. We have studied the
dynamics of smallpox epidemics in Penrith, Cum-
bria, in detail (Duncan et al. 19934,5).

3. Large cities, e.g. London (Duncan et al. 19935),
Chester, Glasgow and Edinburgh (Duncan et al.
1994), where smallpox was endemic with super-
imposed epidemics at a frequency of 2 to 3 years.

In this paper we present computer modelling of
populations (ii) and (iii) to illustrate the different
dynamics of the disease.

2. METHODS

Time-series analysis was carried out by the time-series
comuting method of Shumway (1988) with an IBM
PC AT, as previously described (Duncan et al. 1992).
Modelling was developed using the SIMULINK module
in the PRO-MATLAB package and run on a Sun
Workstation. The differential equations were solved
by using the function in SIMULINK, which is based on
fourth-order Runge—Kutta—Fehlberg methods (For-
sythe et al. 1977).
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3. THE DYNAMICS OF SMALLPOX
INFECTIONS

Anderson & May (1991) have provided a mathema-
tical study of the theory of infectious, viral epidemics;
their analysis as applied to smallpox is summarised in
appendix 1. There are two important conclusions that
can be drawn from this analysis.

(1) After an epidemic of smallpox in a medium-sized
rural town almost all the children will have been
infected, so that the population will be largely
composed of immune survivors (Z) from the latest or
earlier epidemics. The 5 year inter-epidemic interval
detected by time-series analysis of the burials in the
parish registers is the time taken to build up the
density of susceptibles by new births to a critical
threshold level.

(ii) A model of these four basic equations, determining
the fraction of susceptibles (X) as a function of time,
exhibits a damped oscillation, i.e. the epidemics are
predicted to die out rapidly (Anderson & May 1991).
This prediction is clearly at variance with our study of
smallpox epidemics at London (Duncan et al. 19935),
Chester (Duncan et al. 1994) and Penrith and other
rural towns (Duncan et al. 19934), where the
oscillatory outbreaks clearly do not decay over a
period of 150 years.

Smallpox in the sixteenth and seventeenth centuries
in England was almost wholly a disease of children;
the mean age at death has been calculated as 2.6 years
(Razzell 1977) and 4.5 years (Scott & Duncan 1993).
The equations derived in the Appendix predict that
the inter-epidemic period (7) would be 2 years, a
value that agrees with the period of smallpox
epidemics detected in large conurbations (Duncan et
al. 19935). We conclude, therefore, that smallpox
epidemics occurred at approximately 5 year intervals
in medium-sized towns because of the absolute
requirement that the susceptibles needed to build up
by fresh births to exceed the critical threshold density.
On the other hand, in large cities, where the disease
was endemic, the system oscillated at its natural
frequency.

Anderson & May (1991) have suggested that
stochastic effects could perpetuate and pump up a
decaying oscillation, so locking the system into
sustained cycles; they have explored a variety of
different mechanisms by which epidemics in different
diseases may be perpetuated. What external factors
would act to pump up the oscillations (smallpox
epidemics) both in large conurbations and in rural
towns, where T is clearly different, in England during
165018007 We have suggested that a periodic
fluctuation in susceptibility to this disease (B) could
provide the necessary trigger to maintain the
oscillations (Duncan et al. 19934). Short-wavelength
oscillations in annual total deaths with a period of
approximately 5 years have been described in the
parish of Penrith, Cumbria (Duncan et al. 19934) and
in other parishes in N. W. England (Duncan et al.
19934) throughout the period 1550—-1800, and these
have been shown to synchronize with corresponding
oscillations in wheat prices, which also have a
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periodicity of about 5 years. The thesis that wheat
prices drive child deaths at Penrith has been tested by
examining the input—output relations of the two series
(Shumway 1988); the squared coherence function
showed that the two series are coherent in the
frequency bands of wavelength 5-6 years after 1650
(Duncan et al. 19935). We suggest that periodic high
grain (wheat and barley) prices caused malnutrition
and famine, resulting in higher mortality, particularly
among infants and young children. These oscillations
in mortality became established after 1550 and, it is
suggested, caused an associated fluctuation in suscept-
ibility to disease. These oscillations in susceptibility to
smallpox established the 5 year epidemics after 1640
and were superimposed on the pre-existing mortality
cycle.

Another possible periodic oscillation in susceptibil-
ity to infection is the annual seasonal fluctuation. A
small-amplitude, seasonal mechanism has been sug-
gested to produce period-doubling bifurcations, so
causing the biennial measles epidemics (Dietz 1976;
Aron & Schwartz 1984).

We consider here the theoretical effect of a sinusoidal
variation in susceptibility (or transmission coeflicient,
B) on the population dynamics of two model commu-
nities, a large city and a medium-sized rural town (see
Olsen et al. 1988; Olsen & Schaffer 1990).

4. THEORETICAL EFFECT OF A VARIATION
IN SUSCEPTIBILITY TO SMALLPOX (B)

Three changes have been applied to the four basic
equations described in the Appendix.

(i) The latent stage of the infection is ignored and the
latents are incorporated into infectives.

(ii) The death rate from smallpox, a, is included in
the equations.

(iif) The variables X, Y and Z give the absolute
numbers in each class but, using the approach
described in Anderson & May (1991), the equations
are written in terms of the fraction of the population
in each class by defining three new variables:

x=X/N;=Y/N, z=2Z/N.

Incorporation of these changes reduces the basic
equations to:

dx/dt = p — px — NBxy; (1)
dy/dt = NBxy — (u +a -+ y)y. (2)

Note that it is necessary to solve only two equations
because the fraction of the population which is
immune, Z, can be deduced from the fact that
x+y+z=1

Equations (1) and (2) describe the response of a
nonlinear equation in terms of a pair of coupled first-
order differential equations. Because this system can
be described by only two differential equations, it is
not possible for the system to display chaotic
behaviour. However, it is proposed that the model is
driven by periodic variations in the susceptibility to
infection. This variation is represented by:
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(21tt)] ’ 3)

where A = the wavelength of the periodic variation
and B = the nominal or steady>state value of the
susceptibility. The amplitude of the variation is
determined by 8B, which represents the change in
the susceptibility, expressed as a fraction of 8.

An alternative description of the dynamic response
of the system can be obtained by defining @ as the
phase of the periodic variation,

@ = (2me)/A; 4)

then equation (3) can be written as
B(2) = B[l + 8B sin(®)] (5)
and equations (1), (2) and (5) can be arranged to give
dx/dt = p — ux — NBxy[l + 8Bsin(P)], (6)
dy/dt = NBxy[l + 8Bsin(®)] — (u+ a+y)y, (7)
d®/dt = 2n/ A (8)

In this form it can be seen that the response of the
system that is driven by periodic variations in
susceptibility can be described by three coupled,
first-order, nonlinear differential equations. Because
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there are three equations, the dynamics of this system
can exhibit a chaotic response, as will be shown below.

Further insight into the response of the model can
be obtained by considering equations (6) and (7) as
consisting of the sum of a linear component and the
nonlinear term,

NBxy[1 + 8B sin(P)].

The amplitude of the variation in the force of the
infection, 8B, determines whether the linear or non-
linear term dominates.

If a linear system is driven by a sinusoidal variation,
the output in both number of susceptibles and number
of infectives is sinusoidal where: (i) the frequency of
the output variation is the same as the frequency of
the driving variation; (ii) the amplitude of the output
variation will be different from that of the amplitude
of the driving term; and (iii) the output variation will
be phase shifted relative to the driving variation.

For given values of death rate (1), smallpox death
rate (a) and recovery rate (y), the natural frequency
of the system is determined by the value of N8 (where
N = population size and B=the steady state value of
susceptibility or transmission coefficient before any
oscillations are applied). The natural frequencies of
the two populations under consideration are 2 years
(large cities) and 5 years (medium-sized rural towns)

[e]
(=]

S
(=]

0 0.4 0.8 1.2 1.6

frequency / years-!

Figure 1(a,c) Amplitude of the response of model systems plotted against the frequency of the input. (4,d) Phase
shift in degrees (ordinate) plotted against input frequency (l/years). (a,6) NB =270 (‘London’), maximum
output amplitude generated at a frequency of 0.5.(¢c,d) NB = 65 (‘Penrith’), natural frequency of 0.2.

Phil. Trans. R. Soc. Lond. B (1994)
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and can be characterised by using frequency response
plots (or Bode diagrams) of the linear portion of the
systems.

Figure la,b illustrates the response of the linear
portion where NB = 270; figure la plots the ampli-
tude of the output variation generated by a unit input
variation against frequency. The maximum output
amplitude is generated by an input frequency of 0.5
(i.e. period = 2 years; figure la). Figure 15 shows the
corresponding phase shift in degrees; for frequencies
below 0.5 the output leads the input and for
frequencies above 0.5 the output lags the input.

Figure l¢ (magnitude of response) and figure 1d
(phase shift) illustrate the corresponding responses
where NB = 65. The system has a natural frequency
of 0.2 (period = 5 years).

The foregoing applies to the linear element of the
system. For small amplitudes of the variation (88) the
response is approximately linear, so that the output is
sinusoidal for a sinusoidal variation in 88 at the same
frequency, but different in amplitude and phase. As
OB is increased the nonlinear effects begin to become
significant (see below).

A fourth-order Runge—Kutta—Fehlberg method is
used to integrate the differential equations. However,
using the equations in the form given in (6)—(8), the
integration procedure proved to be susceptible to

103 x fraction of population infected

fraction of population susceptible

0 4 8 12 16
time / years

fractional change in 88

Modelling smallpox epidemics

numerical errors, particularly in regions where the
number of infectives is small (i.e. between epidemics).
The robustness of the integration procedure can be
improved by transforming equations (6) and (7) by
using the substitutions # =log.x and v =log.y, so
that du/dx = 1/x and do/dy = 1/y.

This leads to

du/dt = pe ™ — u — NB[1 + 3B sin(P)]e’; (9)
dv/dt = NB[1 + 8BsinPle” — (u+a+7y). (10)

5. SINUSOIDAL VARIATION IN
SUSCEPTIBILITY

In the modelling described below, the system is
assumed to start out in steady-state, the original
oscillations being damped out. The dynamics of model
populations are simulated by assuming u = 0.04,
a=40, y=200 (ie. the average age at
death = 25 years and 1/6 of those infected die of the
disease), the latent plus infectious periods = 15 days.
The dynamics of the two model populations are
defined as follows: NB =270 in a large city (e.g.
London or Chester; see figure la,b) and NB =65 in
rural towns (e.g. Penrith; see figure lc,d). When
comparing different populations, it is evident that N is

0.105 ¢

0.095 Ff-

0.0854

8
time / years

Figure 2. London model. N3 = 270; 68 = 0.08; period of sinusoidal input =1 year. (a) Fraction of population
infected; note dominant 2 year oscillation; smallpox is endemic. (4) Fraction of population susceptible. (¢) Phase dia-
gram of fraction of population susceptible vs. fraction of population infected vs. fractional change in 3.
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not simply the total size of the population but is also
related to the average population density.

The driving force is a sinusoidal variation in
susceptibility; the input is either (i) an annual
seasonal cycle as has been suggested for driving the
biennial measles epidemics (Dietz 1976; Aron &
Schwartz 1984) or (ii) a 5 year cycle associated with
grain prices, famine and hardship. The model is run
for 250 years and all figures show the results for the
last 20 years (fraction of population infected or
susceptible) or the last 50 years (phase diagrams).

Example 1. London: 88 = 0.08, period of sinusoidal
input = 1 year. The results of modelling are shown in
figure 2. The small annual fractional change in B
(8%) generates a 2 year oscillation in the fraction of
the population infected although there is evidence of
the effects of the annual input in the inter-epidemic
years. The number of infectives does not drop to zero
in the inter-epidemic periods, i.e. the disease is
endemic (figure 2a). The progressive rise in the
number of susceptibles, which crashes at the epi-
demic, is shown in figure 25. The phase plane of
susceptibles vs. infectives vs. the fractional change in
OB after the system has stabilized is shown in figure 2c.
The fraction of the population infected in the phase

103 x fraction of population infected

0 4 8 12 16

fractional change in 83

~0.09
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diagram does not fall to zero, indicating that smallpox
was endemic. There is no indication of chaos; the
phase diagram is simply the result of driving a
nonlinear system with a sinusoidal input. We
conclude that a small (8%) annual variation in B is
sufficient pump up the system, so that the system
oscillates at its natural frequency (2 years).

Example 2. London: 38 = 0.11, but the sinusoidal input
is compounded of 75% 1 year cycle, 25% 5 year cycle
(i.e. the annual cycle is modified by a small
component of the wheat price cycle). The change in
the fraction of the population infected is shown in
figure 3¢ and the change in the fraction of the
population susceptible to smallpox is shown in figure
3b. Again, the number of infectives does not drop to
zero in the inter-epidemic periods. The oscillation
generated is less regular than that shown in figure 2a
and superficially more closely resembles the London
smallpox epidemics that have been determined by
filtering the Bills of Mortality series (Duncan et al,
19936). This is illustrated by the phase diagram
(fraction of the population infected plotted vs. fraction
susceptible vs. 8f) in figure 3c.

Spectral analysis of smallpox deaths recorded in the
London Bills of Mortality shows clearly that only the

fraction of population susceptible

time / years

. e
0007 0.08 |a500 s\:scepub
- gop?!
Coteg “acﬁoﬂ of 2OP

Figure 3. London model driven by a compound input 88 =0.11, 75% 1 year cycle and 25% 5 year cycle;
NB = 270. (a) Fraction of population infected. Smallpox is endemic. (4) Fraction of population susceptible. (c)
Phase diagram, fraction infected vs. fraction susceptible vs. fractional change in 88; smallpox endemic.
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2 and 3 year cycles are significant, although minor
peaks at a wavelength of 5 years can be detected.
Filtering the London Bills of Mortality smallpox series
(filter window =4-8 years) to exclude the 2-3 year
cycles reveals clear 5 year oscillations (a.c.f. at 5
years = 0.6). When this series is run against wheat
prices, using the same filter, there is a good cross-
correlation at zero lag (c.c.f.=0.49). The coherence
between wheat prices (input) and London smallpox
mortality (output) is significant (p < 0.025) only in
the 5 year cycles. We conclude that there is evidence
that the 5 year oscillation in wheat prices may
produce a secondary 5 year oscillation in B, which
modulates the response of the system in London to its
1 year driving sinusoidal input.

Example 3. Penrith: 3B = 0.05; period of sinusoidal
input = 5 years. The natural period of the system is
close to 5 years and with only this small 38 (5%)
very large epidemics are generated at a periodicity
of 5 years. There are virtually no infectives in the
inter-epidemic period (figure 4a), i.e. the disease was
not endemic. The response is non-sinusoidal. The
corresponding simulation for the number of suscep-
tibles (figure 44) shows the progressive build-up by
new births during the inter-epidemic period and the
dramatic fall at the epidemic. The phase diagram of

M@ .

103 x fraction of population infected

fraction of population susceptible

Modelling smallpox epidemics

susceptibles vs. infectives vs. 88 is shown in figure
4c.

We conclude that the dynamics at Penrith are
simply explained; the population takes 5 years to
build up the pool of susceptibles to threshold size/
density (X > Nt); i.e. the natural frequency of the
system is determined by NB = 65, whereupon an
epidemic is triggered by a very small change in 8 so
that smallpox oscillations become phase-locked to the
5-year oscillations in wheat prices.

Example 4. Penrith: 88 = 0.08; the sinusoidal input is
compounded of 75% 1 year cycle, 25% 5 year cycle.
The resulting oscillation is less regular, but strongly
retains its 5 year periodicity. However, the number of
infectives does not fall to zero in the inter-epidemic
period (figure 5a) and this is not a completely
satisfactory model of the conditions at Penrith. We
conclude that, with NB = 65, the Penrith model is
robust so that even when only 25% of the inputis a 5
year oscillation the epidemics are established at 5 year
intervals. Indeed, with N8 = 65, the model locks onto
the 5 year component, even if the ratio of the 1 year
cycle to the 5 year cycle is 9: 1.

Example 5. Penrith: 8B is raised to 0.13; the sinusoidal
input is compounded of 75% 1 year cycle, 25% 5 year

0 4 8 12 16
time / years

fractional change in 68

8
time / years

042

Figure 4. Penrith model. N3 = 65; 88 = 0.05; period of sinusoidal input = 5 years. (a) Fraction of population
infected; 5 year, non-sinusoidal oscillatory output; smallpox is not endemic. (b) Fraction of population suscepti-
ble. (¢) Phase diagram, fraction infected vs. fraction susceptible vs. fractional change in 88.
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cycle. The 5 year oscillation in infectives shows clearly
with this higher 88 of 13% (figure 64) even though the
5 year driving input has again been reduced to 25% of
8B. The build-up of the number of susceptibles during
the interepidemic periods is shown in figure 6. We
conclude from examples 4 and 5 that the 1 year
seasonal cycle has little effect on the dynamics of the
Penrith model, which is robust and primarily responds
with 5 year epidemics.

Compared with the changes induced by variations
in the susceptibility, 38, the model system is markedly
less sensitive to fluctuations in the disease-induced
death rate, a, and the non-diseased induced mortality
rate, u.

7. THE RESPONSE OF THE SYSTEM TO A
PROGRESSIVE INCREASE IN 48

Equations (6) and (7) represent a nonlinear system
that is defined by the value of NB; the foregoing
examples illustrate how populations with differing
values of NB have different fundamental character-
istics, including the period of their natural frequency.
The system has two components: there is a basic linear
element, with the remainder of the system being
nonlinear. As 8B (which is the amplitude of the

103 x fraction of population infected
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variation driving the system) is increased, the
nonlinear effects become more significant. This effect
of progressively raising 88 has been studied in the
London model (N8 = 270) driven by a sinusoidal 1
year input; the results are summarised in table 1. At
very low levels of 88 (<0.055) the 1 year input
generates a regular 1 year output cycle (figure 7a),
but at 38 = 0.055 the response of the system changes
and, within the broad range of 8 = 0.055 to 0.25, a
regular 2 year cycle is generated. At the lower end of
this range (e.g. §8 = 0.059), the | year component of
the output is clearly evident; however, at values of
88 > 0.065 the 1 year component is of little
importance (see figure 2; 88 =0.08). As 3B is
increased to around 0.25 there is a bifurcation
(revealed on the phase diagram) so that the pattern
repeats every 4 years although the dominant oscilla-
tion remains at 2 years (figure 7). Further bifurca-
tions occur at 068 =0.285 (figure 7¢) and at
B = 0.293 (note narrow ranges of 88 in table 1).
The system becomes chaotic at 88 = 0.3 (figure 7d)
and remains so until, at 88 = 0.435, it abruptly
switches back to a condition of steady, 4 year
epidemics with virtually no infectives between out-
breaks. This abrupt transition is clearly illustrated by
comparing figures 7d (88 =0.434) and e

8 2

g 12

time / years time / years
002"
s |
P 0’01 g
[
&
g 0
E
£ -0.014
g
—0.02 ‘
3 . ‘  |

Zacy, 2 ) — — o

) ) T - \\\a(\ox\soscepub
aty,, ' | ?

alnfe%d Emc\sm\o

Figure 5. Penrith model driven by a compound input, 88 =0.08, 75% 1 year cycle and 25% 5 year cycle;
NB = 65. (a) Fraction of population infected; 5 year, non-sinusoidal oscillatory output; number of infectives does
not fall to zero in inter-epidemic years. (b) Fraction of population susceptible. (¢) Phase diagram, fraction
infected vs. fraction susceptible vs. fractional change in 38 due to 5 year cycle.
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Figure 6. Penrith model driven by a compound input, 88 = 0.13, 75% 1 year cycle, 25% 5 year cycle; NB = 65.
(a) Fraction of population infected. (b) Fraction of population susceptible; abscissa = years. (¢) Phase diagram,
fraction infected vs. fraction susceptible vs. fractional change in 88 due to five year cycle.

(88 = 0.435). It seems that chaos in the model system
is related to the transition from the endemic to the
epidemic condition.

As 8B increases further (>0.63), bifurcations occur;

Table 1. Regions of response of London system to variation
in Op
(NB=270; y =1 year)

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

see figure 7f (note the narrow ranges of 08 for changes 3 behaviour figure
in the character of the response of the system, table 1),
and the system again becomes chaotic although the 0-0.055 Regular 1 year cycle Ta
underlying 4 year oscillation remains visible. 0.055-0.25  Regular 2 year cycle (with 2
We conclude from this modelling (i) that if 1 year component detectable)

NB =270 is accepted as a description of conditions 0.25-0.285 st bifurcation; regular 4 year 7b
in London (see figure 1), the annual variation in pattern repeat, although 2 year
susceptibility that will trigger the 2 year epidemics lies spikes dominate
in the range ,Of 5B = 3% to 25%;.and (ii) that i:haos 0.285-0.293 2nd bifurcation; regular 8 year Tc
may be associated with the transition from the disease pattern repeat
being endemic with major superimposed epidemics to . .
the condition of regular epidemics with virtually no ~ 0-293—0.297  3rd bifurcation; 16 year pattern
infectives in the inter-epidemic years.- repeat

0.3-0.434 Chaotic 7d
8. THE EFFECT OF A VARIATION IN NB 0.435-0.62  Regular 4 year pattern: true Te

epidemics with ‘zero’ infectives

The two model systems studied here, London and between outbreaks (not endemic)
Penrlth, dlffe}* in NB, Le. in populatlon' size or density. 0.63 Ist bifurcation; 8 year pattern 7
In this section we briefly summarize the effects repeat
produced when either a | year or a 5 year sinusoidal ) .
driver is applied to a population with a progressive 064 2nd bifurcation; 16 year pattern
increase in NB. The amplitude of 88 is arbitrarily fixed repeat
at 0.1, within the range that generates a 2 year cyclein ~ 0.66 Chaos (although 4 year peaks are  7g

the London model (table 1) and a 5 year cycle in the
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Figure 7. Different steady-state responses of a nonlinear system, the London model, to a progressive increase in
OB. NB =270; y =1 year. Figures illustrate the fraction of the population infected when the system has settled
after the introduction of the oscillation in 38 (left-hand column) and the corresponding phase diagram, fraction
infected vs. fraction susceptible vs. fractional change in 88 (right-hand column). Values for 88: (a) 0.03, (4),

0.26, (¢) 0.292, (d) 0.434, (¢) 0.435, (f) 0.63, (g) 0.8.

Penrith model. The results for N8 =65 to 600 are
shown in table 2. The 1 year sinusoidal input produces
an endemic response throughout the range of N8 but,
with 88 = 10%, the two-yearly epidemics character-
istic of London are found over a finite range of Ng:
250 < NB < 330. The characteristic 2 year epidemics
superimposed on an endemic condition for London are
shown at N =270. The system reverts to 1 year
oscillations above N8 = 330. NB = 90 corresponds to a
population where the natural frequency of oscillations
is four-yearly; however, no such oscillations in response
to a 1 year driver were detectable in the model,
although they might exist at a different value of 88.
The response of the model to a 5 year driver
switches from epidemic to endemic around NB = 180

Phil. Trans. R. Soc. Lond. B (1994)

(table 2). The 5 year epidemics at N8 = 65 to 130 are
characteristic of Penrith.

The results summarized in table 2 are applicable
only to 88 around 10%; different responses may be
obtained if markedly different values of 88 are chosen
(see table 1). Nevertheless, these responses illustrate
the fundamental difference between medium-sized
rural towns (NB < 180) and cities and larger
conurbations (N8 > 250).

9. CONCLUSIONS

The existing literature on smallpox epidemics in
England is, inevitably, anecdotal; statistics of small-
pox deaths are provided in Bills of Mortality and a
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number of quite detailed accounts have been given of
major, sporadic outbreaks of the disease in different
parts of England during the seventeenth and eight-
eenth centuries. We have attempted to provide the first
detailed, quantitative description of these smallpox
epidemics in two very different, representative situa-
tions in England (Duncan et al. 1992, 19934,b), namely
a large city where smallpox was endemic and a rural
town where the disease did not persist between
epidemics. Mathematical theory of infectious diseases
predicts that: (i) the inter-epidemic period (7") for
smallpox is 2—3 years; and (ii) oscillatory epidemics die
out unless the system is perturbed. We have shown
clearly for the first time that these oscillations were not
damped out and that regular smallpox epidemics
persisted in Britain for 150 years in both these
contrasting situations (Duncan et al. 1992, 1993q).
The inter-epidemic period is approximately 2 years in
large conurbations whereas it is 5 years in Penrith and

0.04 -
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fraction of population infected

004 | O
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fraction of population infected
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fractional change in 83

fractional change in 83
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other rural towns. We explain these apparent
discrepancies as follows. The foregoing simulations
illustrate how different patterns of epidemics can
theoretically be generated by a fluctuation in suscep-
tibility in a system described by equations (1) and (2);
they show that a periodic variation in susceptibility can
pump up and produce persistent oscillations in a
steady-state system. Each system will tend to resonate
at its natural frequency, determined by its population
size and density (which govern the birth rate of new
susceptibles and the ease of spread of the disease) and
by its sensitivity to external factors. If the external
factors fluctuate regularly (1 year or 5 year cycles) they
are sufficient to pump up and maintain the oscillatory
epidemics. These dynamics of smallpox can be
demonstrated by mathematical modelling: the
London model naturally oscillates with a 2 year
periodicity and requires only a minor perturbation of
a | year sinusoidal input (88), whereas in Penrith it

=4
wn

Figure 7. Continued.
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Table 2. Responses shown by a progressive increase in NB to a I year or 5 year sinusoidal change in &

(Value of 88 =0.1.)

NB
Wavelength
of driver 65 130 200 270 330 350 600
1 year lyr lyr 1yr 2 yr 2 yr 1 yr 1 yr
Endemic Endemic Endemic Endemic Endemic Endemic Endemic
Syears 5 yr 5 yr 5 yr? 5yr 5yr 5yr 5yr
Epidemic Epidemic Endemic Endemic Endemic Endemic Endemic

?Intermediate, small oscillations seen, two years after each 5 year epidemic.

takes approximately 5 years for an adequate build-up
of susceptibles, whereupon an epidemic can be
triggered by a periodic small change in B.

We have now completed an intensive family
reconstitution study of the population at Penrith.
Studies of coherence functions show that the 5-year
oscillation in the child burial series synchronizes with
the wheat price index from 1560 to 1650 and it was on
this pre-existing cycle of child mortality that the
virulent outbreaks of smallpox epidemics were
established in 1650. The principal hazard in the
northern province at that time was the meagre corn
harvest, which placed the whole economy upon a
precarious footing. The main crop in Cumberland was
barley or bigg, a poorer and hardier variety of barley
(Thirsk 1967) and diets deficient in multiple nutrients
frequently lead to a lower resistance to infection
(Scrimshaw ¢t al. 1968). From about 1650 to 1710 the
child mortality cycles synchronized most closely with
the barley price index, whereas from 1750 to 1812
they again cross-correlate with the wheat price index.
Although the smallpox epidemics and child mortality
cycles continued strongly during the intervening
period, 1710-1750, they did not synchronize with
the grain price indices. By this time, Penrith was a
thriving market town (Furness 1894) and we have
detected oscillations in immigration from surrounding
parishes where the population size or density was too
small for the establishment of smallpox epidemics.
Such incomers would add to the pool of susceptibles,
thereby effectively providing a periodic variation in N
and x, i.e. the system can be driven by fluctuations in
NBxy (equation (2)). Because births were also
fluctuating on a 5 year cycle, 180° out of phase with
deaths (Duncan et al. 1992), this feature of the
population dynamics will also contribute to the
variation in x. Oscillations in food shortages and
malnutrition, as well as modifying susceptibility to
disease (Scrimshaw et al. 1968) and initiating
immigrations and fluctuations in Nfxy, could have
other possible effects; for example, the mortality rate
from smallpox could rise, so exacerbating the records
in the burial series.

It is evident that the basic equations given in
appendix | are probably not strictly applicable to the
conditions at Penrith where the disease was not
endemic (unlike London) and hence where there

Phil. Trans. R. Soc. Lond. B (1994)

was not a continuous chance of infection. The
minimum inter-epidemic period (5 vyears) was
critically dependent on the time taken to build up a
supply of susceptibles by new births and immigration,
whereupon only a small change in the dynamics is
necessary to trigger an epidemic although this would
not explode unless an infective came into the
community. Penrith was on the main road to
Scotland, so travellers and drovers would contribute
to the movement of infectives. We have shown that
smallpox epidemics in the adjacent towns in the
north-west were largely synchronized, a feature that
would exacerbate the five-yearly cycle. In the Penrith
model (figure 4) the fraction of the population does
not drop completely to zero in the inter-epidemic
years, but the modelling shows a fraction of an
individual infected, which is obviously impossible in
reality. However, the sum of these fractions over 5
years probably represents stray infectives coming into
the community.

The modelling shows that an annual fluctuation of
only 5% in susceptibility is sufficient to trigger the 2
year epidemics in the London model and, if N8=270
is accepted as a description of this population, it can
be seen from table 1 that 88 lay in the range 0.055—
0.25. It has been suggested that the 2 year measles
epidemics that were experienced nationally in the
twentieth century, when the population (in compar-
ison with the seventeenth and eighteenth centuries)
was extremely mobile, could have been pumped up by
the introduction of a noisy signal to 8 (Bartlett 1990;
Rand & Wilson 1991; Grenfell 1992; Bolker &
Grenfell 1993). We have introduced broad-band
noise from a random noise generator with zero mean
as a source of variation in susceptibility (88) into the
London and Penrith models. The 2 year epidemics
can be generated in London but only if the input is of
large amplitude; we conclude that an annual
oscillatory input is the more probable explanation
for pumping up these epidemics. An oscillatory driver
is a requirement for the simulation of the conditions of
smallpox epidemics in rural towns.

Landers (1986, 1987, 1990) has studied smallpox
deaths in Quakers in London, 1675-1825, and
concluded that epidemic episodes were precipitated
by the immigration of young adult susceptibles from
the countryside in search of work during periods of
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food shortages and hardship. Such a suggestion can be
incorporated into the London model; fluctuations in x
and N could contribute to a secondary oscillation in
NBxy. The periodicity of this immigration is not given
but it was probably associated with the fluctuations in
the grain price index; we have shown that there is a
secondary 5 year oscillation in London smallpox
deaths which contributes to the complex dynamics
of the disease.

Table 1 shows that if 88 is raised progressively
above 0.25 in the London model the dynamics alter
dramatically with bifurcations and chaos which then
switches sharply at 88 = 0.435 to a pattern of 4 year
epidemics with virtually no infectives between out-
breaks. This theoretical finding suggests that chaos
may be associated with the transition from the
endemic condition to the strictly epidemic condition.
The modelling shows that if the amplitude of the
variations in susceptibility (88) are sufficiently high,
the system exhibits a chaotic response. However, the
presence of the variation in susceptibility (the driver)
is a sufficient condition for inducing this chaos; the
undriven system defined solely by equations (1) and
(2) cannot become chaotic. Such chaotic conditions
are probably of only theoretical interest since
presumably 88 will not normally be at such high
levels and the London smallpox mortality series
confirms that the disease was endemic throughout
the period of study.

APPENDIX 1

The basic equations concerning the theory of viral
epidemics (Anderson & May 1991) can be summar-
ized as follows. The population, N, is assumed to
remain constant where the net input of susceptibles
(births) equals the net mortality, puN (where
w =death rate; life expectancy = 1/u). The popula-
tion is divided into susceptibles (X), latents (infected,
not yet infectious, H), infectious (Y) and recovered
and hence immune (Z). Thus, N=X+H+Y+Z. Itis
assumed that the net rate at which infections occur is
proportional to the number of encounters between
susceptibles and infectious, BXY (where B is a
transmission coefficient). Individuals move from
latent to infectious at a per capita rate, o, and
recover, so becoming immune, at rate 7. The
dynamics of the infection are then described by the
following equations:

dX/dt = uN — uX — BXY; A(1)
dH/dt = BXY — (u+ 0)H; A@2)
dY/dt =oH — (u+)Y; A(3)
dZ/dt = yY — uZ. A(4)

The criterion for triggering an epidemic is the
requirement (Anderson & May 1991) that the
susceptibles (X) exceed a threshold density, X > Nr,
where

Nt = (y +u) (0 + p)Bo. A(5)

The oscillation shown by the model has a period (T
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where

T ~ 2n(AD)", A(6)

where 4 is the mean age at mortality once the
infection is endemic and D is the sum of the latent and
infectious periods and is approximately 12 days for
smallpox (Anderson & May 1991).

REFERENCES

Anderson, R.M. & May, R.M. 1991 Infectious diseases of
humans. Oxford University Press.

Appleby, A.B. 1981 Epidemics and famine in the Little Ice
Age. In Climate and history (ed. R.I. Rotberg & T.K.
Rabb), pp. 65-83. Princeton, New Jersey: Princeton
University Press.

Aron, J.L. & Schwartz, I.B. 1984 Seasonality and period-
doubling bifurcations in an epidemic model. J. theor. Biol.
110, 665-679.

Bartlett, M.S. 1990 Chance or chaos (with discussion)? J/
R. statist. Soc. A 153, 321-347.

Bolker, B.M. & Grenfell, B.T. 1993 Chaos and biological
complexity in measles dynamics. Proc. R. Soc. Lond. B 251,
75-81.

Corfield, P.J. 1987 Introduction. In The speckled monster,
smallpox in  England 1670-1970. Hunstanton, Norfolk:
Witley Press.

Dietz, K. 1976 The incidence of infectious diseases under
the influence of seasonal fluctuations. In Lecture notes in
biomathematics (ed. J. Berger, W. Buhler, R. Repges & P.
Tantu), pp. 1-15. Heidelberg, Berlin: Springer-Verlag.

Duncan, S.R., Scott, S. & Duncan, C.J. 1992 Time series
analysis of oscillations in a model population: the effects of
plague, pestilence and famine. J. theor. Biol. 158, 293—311.

Duncan, S.R., Scott, S. & Duncan, C.J. 1993¢ An hypothesis
for the periodicity of smallpox epidemics as revealed by time
series analysis. J. theor. Biol. 160, 231—-248.

Duncan, S.R., Scott, S. & Duncan, C]J. 19936 The
dynamics of smallpox epidemics in Britain 1550—-1800.
Demography 30, 405—423.

Duncan, S.R., Scott, S. & Duncan, C.J. 1994 Smallpox
epidemics in cities in Britain. J. interdiscip. Hist. 25, 255-271.

Forsythe, G.E., Malcolm, M.A. & Moler, CB. 1977
Computer methods for mathematical computations. Prentice-Hall.

Furness, W. 1894 The history of Penrith from the earliest
period to the present time. Penrith: W. Furness.

Grenfell, B.T. 1992 Chance and chaos in measles dynamics.
JI R. statist. Soc. B 54, 383—-398.

Landers, J. 1986 Mortality, weather and prices in London
1675—1825: a study of short-term fluctuations. J. Hist.
Geog. 12, 347-364.

Landers, J. 1987 Mortality and metropolis: the case of
London 1625-1825. Pop. Stud. 41, 59-76.

Landers, J. 1990 Age patterns of mortality in London during
the ‘Long Eighteenth Century’: a test of the ‘High Potential’
model of metropolitan mortality. Soc. Hist. Med. 3, 27—60.

Olsen, L.F. & Schaffer, WM. 1990 Chaos versus noisy
periodicity: alternative hypotheses for childhood epi-
demics. Science, Wash. 249, 499—-504.

Olsen, L.F., Truty, G.L. & Schaffer, W.M. 1988 Oscilla-
tions and chaos in epidemics: a nonlinear dynamic study
of six childhood diseases in Copenhagen, Denmark. Theor.
Popul. Biol. 33, 344-370.

Rand, D.A. & Wilson, H.B. 1991 Chaotic stochasticity: a
ubiquitous source of unpredictability in epidemics. Proc.
R. Soc. London. B 246, 179—184.

Razzell, P. 1977 The conquest of smallpox. Sussex: Caliban
Books.


http://rstb.royalsocietypublishing.org/

B

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

B

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rstb.royalsocietypublishing.org

Modelling smallpox epidemics S. R. Duncan and others 419

Scott, S. & Duncan, C.J. 1993 Smallpox epidemics at Smith, J.R. 1987 The speckled monster, smallpox in England

Penrith in the 17th and 18th Centuries. Trans. Cumb. 1670—-1970. Hunstanton, Norfolk: Witley Press.

West. antiq. archagol. Soc. XCIII, 155—-160. Thirsk, J. 1967 The farming regions of England. In The
Scrimshaw, N.S., Taylor, C.E. & Gordon, J.E. 1968 agrarian history of England and Wales (ed. H.P.R. Finberg),

Interactions of nutrition and infection. Geneva: World Health vol. IV, pp. 1-112. Cambridge University Press.

Organization.

Shumway, R.H. 1988 Applied statistical time series analysis. ~ Received 29 March 1994; accepted 26 May 1994
Wisconsin: Prentice-Hall International Editions.

Phil. Trans. R. Soc. Lond. B (1994)


http://rstb.royalsocietypublishing.org/

